日本不卡一区视频-日本不卡视频一区二区三区-日本不卡视频一区二区-日本不卡高清免费v日本-色国产视频

產品分類

當前位置: 首頁 > 傳感測量產品 > 工業傳感器 > 慣性傳感器

類型分類:
科普知識
數據分類:
慣性傳感器

結合手機慣性傳感器的地下定位算法研究

發布日期:2022-10-09 點擊率:94

  隨著我國城鎮化的快速發展,城市人口不斷增多,為滿足人們對空間容量的需求,城市生存空間已經從地上擴展到了地下,包括軌道交通、商業設施、地下車庫、高層建筑地下空間等。地下空間的合理開發利用,能夠有效解決交通擁堵、土地資源缺乏等問題,實現城市集約化發展,進一步提高城市的用地效率。然而,與地上空間相比,人們在地下空間活動仍存在許多不便之處,其中之一便是地下位置信息獲取困難。由于高層建筑物的遮擋,在地下空間不能接收到衛星信號,導致基于全球導航衛星系統的定位方式受限。

  在無全球導航衛星信號環境中可以利用RFID、WiFi、藍牙進行位置推算,但需要額外的硬件設備支持,同時地下空間較為封閉,若布置大量電磁信號發射器,易造成信號干擾,影響定位精度?;?a title="中國慣性傳感器網" href="http://www.juokas.cn/product/list.php?catid=1048" target="_blank">慣性傳感器的步行者航位推算(PDR)不受外部環境的影響,適合地下定位使用,是目前的研究熱點之一,但易產生較大的累積誤差,影響定位精度。針對該問題,文獻[4]提出通過某些特定位置的軌跡特征來校正誤差,但需要進行大量樣本訓練,若特征性地標(如樓梯、走廊)較少時,定位效果不能保證??紤]地下空間路徑規劃較為規則、方向性較強,本文提出角度累積匹配法,通過手機集成的慣性傳感器獲取航向及步態信息,以路徑的方向改變量為特征對累積誤差進行糾正,從而獲得最終定位結果。

  1 手機慣性傳感器地下定位原理

  本文利用智能手機的內置慣性傳感器進行航位推算,獲取在地下空間的移動軌跡和位置信息。通常情況下,智能手機均內嵌有光線、距離、重力、加速度、磁場、陀螺儀等傳感器,盡管內嵌式傳感器在精度、抗干擾性等方面存在一些不足,但其具有普及性高、使用方便等優勢,與PDR相結合,能夠滿足人們的部分需求。

  PDR是指通過對加速度、磁場、陀螺儀獲取到的數據進行處理,獲取使用者的行走狀態,包括步態檢測、步長估計和航向推算,根據方向和在此方向上行走的步數、步長來確定行走路徑,進行實時定位。由于實現方式僅依賴于其內部的慣性傳感器,故利用PDR進行定位具有不依賴外界信號源、可連續實時定位等優勢,但同時也造成了其誤差易積累、受慣性傳感器噪聲信號影響較大的結果,因此需使用相關濾波算法對相應傳感器獲取的數據進行預處理,并設計合理的誤差糾正方法校正其累積誤差,基本流程如圖 1所示。

  圖 1 手機慣性傳感器地下定位基本流程

  2 航位推算

  航位推算包括步態檢測、步長估計、航向推算3部分,通過選擇合適的傳感器數據,并對已有算法進行改進,能夠有效提高步態及方向的判斷準確率,降低定位誤差。

  2.1 坐標系介紹

  為利用手機傳感器推算出行走狀態,需要明確手機坐標系和行人坐標系。手機坐標系是手機內部傳感器所使用的坐標系,如圖 2所示,x、y、z 3軸正交,其中x軸平行于手機底部指向右側,y軸平行于手機側面指向手機頂部,z軸垂直于手機屏幕所在平面指向上方。行人坐標系X、Y、Z 3軸正交,其中X軸垂直于行走方向指向行人右側,Y軸與水平面平行指向行走方向,Z軸豎直向上。

  圖 2 手機坐標系

  2.2 步態檢測

  步態檢測指對行人行走步數的判斷,對此進行的研究也較多,由于每次行走會使加速度計產生一個震動周期,因此常用加速度零點檢測法、峰值法和傅里葉變化法來進行步態檢測。手機內部加速度計為3軸加速度計,由于實際情況下手機姿態復雜多變,而人在行走時左右腳交替帶來重心的改變主要體現在行人坐標系的Z軸方向,手機坐標系與行人坐標系之間的不確定關系給步態檢測帶來了一定的困難。為解決這一問題,有學者提出將加速度計固定在人體某處,使加速度計姿態保持不變,此方案雖然能夠取得較好的檢測效果,但不適用于將手機作為數據采集終端。也可求取三軸加速度計在手機坐標系x、y、z 3個方向上的加速度幅值a(式(1)),此方案對手機的姿態沒有要求,且計算簡單,但求取加速度幅值的過程中代入了非重力方向上的加速度擾動,降低了步態的辨識度。

(1)

式中,ax、ay、az分別為加速度計在手機坐標系x、y、z 3個方向上的加速度值。

  由于手機中內置傳感器中包含有重力傳感器,其3軸矢量和指向重力方向,因此本文考慮利用重力傳感器x、y、z 3軸上的分量數據,計算出手機的姿態,從而得出手機加速度計在行人坐標系Z軸方向上aZ的變化情況。

(2)

(3)

(4)

(5)

(6)

式中,gx、gy、gz分別為重力傳感器在手機坐標系x、y、z 3軸方向上的讀數;t為數據采集開始時間;Δt為數據采集頻率f的倒數;ax、ay、az分別為加速度傳感器在手機坐標系x、y、z 3軸方向上的讀數。

  在步態檢測階段,本文對波峰波谷檢測法進行了改進,利用相鄰波峰(谷)之間正向差值Δei的變化快慢S′aZ作為行走窗口的判斷依據(式(8)),行走窗口內的S′aZ>δ的波峰個數即為步數。其中以f為滑動平均濾波后剔除小于2的值后得到S″aZ,利用式(9)取頻數最高的區間中值為δ。

(7)

(8)

(9)

為檢驗此算法是否能夠適應手機不同姿態準確檢測出步數,本文將手機屏幕分別垂直于x、y、z 3軸各走30步,以f=5 Hz的頻率采集數據?;诩铀俣确档牟ǚ宀ü葯z測法處理結果如圖 3所示,本文改進后的處理結果如圖 4所示,可以看出改進算法能有效濾除擾動,保留行走產生的波峰特征[15]。

  圖 3 基于加速度幅值的波峰波谷檢測法

  圖 4 改進后的步態檢測法

  2.3 步長估計

  由于步行者航位推算定位是無源定位,其位置移動距離的確定基于每步的步長,因此步長估計是關鍵的一環。根據相關研究,人們在走路時單步步長S與步頻F呈線性相關,其關系如下

(10)

  2.4 航向推算

  手機中內置的磁力計可以利用地球磁場直接確定方向,該方法簡單,在無電磁干擾的情況下有很好的定向精度,但環境中若有大型電磁發射源、鐵磁體(如汽車、電梯)等物體,很容易對地磁場造成干擾,從而影響定向的準確性。由于此方法并不穩定,本文采用陀螺儀與重力傳感器相結合的方法,計算出行人在Z軸方向上的旋轉角度θZ,從而確定航向,避免了外界環境的干擾,提高了定向的穩定性。

(11)式中,

分別為陀螺儀在手機坐標系x、y、z 3軸上的分量。

  3 特征角度匹配校正

  由于在步長估計及航向推算中數據不可避免地會產生誤差,若不對其進行校正,長時間、長距離地使用會使所產生的誤差累積到難以忽略的程度,嚴重影響定位精度,甚至會給使用者完全錯誤的定位信息,因此需對定位結果進行校正,消除累積誤差。考慮地下活動空間路徑較為規則,人們行走轉向角度與路徑角度相匹配,因此可以結合地下空間平面地圖的路徑轉向角度作為匹配基準對航向、距離累積誤差進行校正,提高定位精度。其具體方法如下:

  設地下空間坐標系為X′OY′,沿道路(走廊)選擇其中i個拐點作為特征點,標記其坐標值(X′i,Y′i)和角度wi。在行走過程中,檢測到手機在ΔT=10F-1時間內航位偏轉累積量ΔθZ,以及所對應的定位坐標(Xp,Yp)在式(12)的區間內時,判定其ΔT/2時的定位位置在第i個拐點處,從而以坐標值(Xi,Yi)為真值來校正定位坐標。

(12)式中,μ為誤差累積系數,依據經驗取μ=5%;a為建筑物在X′方向上的最長距離值;b為建筑物在Y′方向上的最長距離值。

  4 試驗仿真

  為驗證以上航位推算及校正算法,本文選擇中國礦業大學(北京)教學樓地下一層為試驗場地進行驗證。

  4.1 試驗區介紹

  試驗區為鋼筋混凝土建筑,建筑面積約1 974.45 m2,內部無WiFi、GPS信號,且蜂窩網絡和通信信號較差。其在X′方向上的最長距離為55.05 m,在Y′方向上的最長距離值為83.9 m,走廊為較為規整的“工”字形,在其中選取兩個特征點A、B,其坐標為A(0, 32.6)、B(0, -32.4),w1=w2=90°,如圖 5所示。

  圖 5 試驗場地及定位校正前后對比

  4.2 試驗驗證及誤差分析

  試驗使用的手機終端為小米6,其內置的傳感器類型及主要參數見表 1,采樣頻率設置為50 Hz。試驗者攜帶手機從起點出發,沿規劃路徑到達終點,總長度約125 m,試驗處理結果如圖 5所示。

  表 1 傳感器類型及主要參數

傳感器類型設備名稱識別率
加速度傳感器ICM20690 Accelerometer0.002 396
陀螺儀ICM20690Gyroscope0.001 068
重力傳感器Gravity0.002 396

  根據規劃行走路線、未校正定位軌跡、校正后定位軌跡之間的坐標差值,計算坐標誤差f(式(13)),其誤差曲線如圖 6所示,誤差頻數統計直方圖如圖 7所示。

  圖 6 誤差曲線對比

  圖 7 誤差頻數統計直方圖

(13) 通過數據處理及誤差分析可以看出,依據特征角度匹配進行校正的效果顯著(見表 2),平均定位誤差降低了54.53%,校正后88.81%的定位誤差不超過3 m,平均定位誤差為1.378 4 m,能夠滿足大多數人的定位需求。

  表 2 校正前后誤差對比

校正前后最大誤差值/m最小誤差值/m誤差分布/(%)平均定位誤差/m
≤2 m≤3 m≤4 m
校正前5.26020.3653.7063.543.031 2
校正后4.16070.2288.8199.781.378 4

 

  5 結 語

  本文以智能手機為定位終端,通過優化步態檢測算法、匹配地下空間路徑特征角度,有效地實現了任意姿態下的步態檢測與誤差累積量消除。與傳統慣性傳感器定位算法相比,其不需要額外硬件設備進行定位坐標校正,能夠持續穩定地提供較為精確的位置信息,且不受電磁信號干擾,校正后平均定位誤差小于2 m,方便人們在地下空間的活動。

下一篇: PLC、DCS、FCS三大控

上一篇: RF采樣轉換器如何捕獲

推薦產品

更多
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |